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ON SOME SPECIAL DIRECTED LAST-PASSAGE

PERCOLATION MODELS

KURT JOHANSSON

To Percy Deift on his 60:th birthday

Abstract. We investigate extended processes given by last-passage times in
directed models defined using exponential variables with decaying mean. In
certain cases we find the universal Airy process, but other cases lead to non-
universal and trivial extended processes.

1. Introduction and results

Let w(i, j) be independent exponential variables with parameter ti + tj , where
tj > 0 are given numbers, i.e.

(1.1) P[w(i, j) ≥ x] = e−(ti+tj)x,

i, j ≥ 1. In this paper we will consider the case when ti = iα, 0 < α ≤ 1. Other
models with varying parameters have been studied in [5]. Consider the last-passage
times G(m,n), m,n ≥ 1, defined by

(1.2) G(m,n) = max
π

∑

(i,j)∈π

w(i, j),

where the maximum is over all up/right paths π from (1, 1) to (m,n). This means
that π = ((ik, jk))

m+n−1
k=1 , where (i1, j1) = (1, 1), (im+n−1, jm+n−1) = (m,n) and

(ik+1, jk+1) − (ik, jk) = (0, 1) or (1, 0).
It was proved in [6] that if ti + tj = 1 for all i, j ≥ 1, then for m ≥ n,

(1.3) P[G(m,n) ≤ ξ] =
1

Zm,n

∫

[0,ξ]n

∏

1≤i<j≤n

(xi − xj)
2

n
∏

j=1

xm−n
j e−xjdnx,

which is the eigenvalue density in the Laguerre random matrix ensemble. This leads
to the formula

(1.4) P[G(m,n) ≤ ξ] = det(I −Km,n)L2(ξ,∞)

for the distribution function, [12]. Here

Km,n(x, y) =

n−1
∑

j=0

p
(m−n)
j (x)p

(m−n)
j (y)(xm−ne−xym−ne−y)1/2,
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where p
(α)
j , j ≥ 0, are the normalized Laguerre polynomials. The formula (1.4) was

used in [6] to show that

(1.5) P[
G(m,n) − cn

dn1/3
≤ ξ] → FTW(ξ)

as n → ∞, m/n → γ ≥ 1, for some explicit constants c, d. Here FTW(ξ) =
det(I −A)L2(ξ,∞) is the Tracy-Widom distribution and

A(x, y) =

∫ ∞

0

Ai (x+ t)Ai (y + t)dt

is the Airy kernel.
In the general case with arbitrary tj > 0 there is no formula like (1.3) which

relates the distribution of G(m,n) to a random matrix ensemble. However we still
have a formula like (1.4) with an explicit correlation kernel, see (1.10) below.

P. Forrester has noted that if we take tk = k + β, β > −1, then we also have a
limit law but with a different limiting distribution related to the distribution of the
smallest eigenvalue in a Laguerre ensemble (hard edge limit):

(1.6) P[G(n, n) − 2 logn ≤ ξ] → det(I −Kβ)L2(ξ,∞)
.
= Uβ(ξ)

as n→ ∞. The kernel Kβ is related to the Bessel kernel,

(1.7) KBessel
α (x, y) =

Jα(
√
x)
√
yJ ′

α(
√
y) −√

xJ ′
α(
√
x)Jα(

√
y)

2(x− y)
,

by

(1.8)
1√
uv
Kβ(log

1

u
, log

1

v
) = 4KBessel

2β+1 (4u, 4v).

Note that although the limit in (1.6) is related to a universal distribution function
from random matrix theory the limit should be thought of as non-universal, since
a small perturbation of the distribution of the w(i, j)’s (perturbing β) changes the
limiting distribution. In [2] it is proved that

lim
β→∞

Uβ(−2 log(4β) + (2β)−2/3s) = FTW(s).

It can also be shown that,

U0(ξ) = e−e
−ξ

.

This follows from formulas in [4]. Hence the family Uβ(ξ) interpolates between the
Gumbel and Tracy-Widom distributions, compare [11].

We can also consider the process k → G(N+k,N−k), |k| < N . In the case when
ti + tj = 1 for all i, j ≥ 1 this process, appropriately rescaled in a neighbourhood
of the origin, converges to the Airy process. In the case when the w(i, j) are
geometric random variables this is proved in [9], but the proof could be modified
to the exponentual case. P. Forrester has raised the question [3] what happens in
the case ti = si = i + β ? What kind of extended limiting process do we get, an
extended Bessel kernel process? In fact it turns out that we get a trivial extended
process meaning that G(N + k1, N − k1) and G(N + k2, N − k2) have the same
fluctuations for k1 and k2 far apart (of the order N). One of the results of this
paper is a proof of a weak version of this result. We will discuss the weak version
below, but first we will give a brief heuristic motivation why we can expect a trivial
extended process.
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If we forget about the maximum in (1.2) we are summing independent exponen-
tial random variables with smaller and smaller variance, the parameter increasing
linearly. Let Xj , j ≥ 1 be independent with distribution Exp(j). Then

E[
n

∑

j=m

Xj ] =
n

∑

j=m

1

j
≈ log

n

m
,

so we can expect a logarithm in the mean, which is exactly what we see in (1.6).
Consider now the variance,

Var[

n
∑

j=m

Xj ] =

n
∑

j=m

1

j2
≈ 1

m
.

This means that the contribution to the fluctuations should come from the w(i, j)’s
with i+ j small. But these will contribute the same fluctuations to almost all the
points on the line i + j = n, when n is large, and hence almost all points on this
line should have the same fluctuations.

Note that if we instead take theXj ’s to be independent with distribution Exp(jα),
0 < α < 1, we get

(1.9) Var[

n
∑

j=m

Xj ] =

n
∑

j=m

1

j2α
≈

{

1
2α−1 (m1−2α − n1−2α), 1

2 < α ≤ 1
1

1−2α (n1−2α −m1−2α), 0 < α ≤ 1
2 ,

so we can expect a difference between the cases α > 1/2 and α < 1/2.
The variance in (1.9) really corresponds to moving along the axes, i.e. considering

G(j, 1) or G(1, j), j ≥ 1. We know from the case ti = 1 that as we move from the
axes to the diagonal there is a reduction in the fluctuations exponent from 1/2 to
1/3, i.e. by 1/6. It is reasonable to expect a similar reduction in the caes when
ti = iα. Hence, the fluctuation exponent should be max(0, 1/3−α), which indicates
a change when α = 1/3. The above heuristics indicates that if we choose ti = iα

we can expect changes in the behaviour when α = 1/2 and α = 1/3. We will see
below that this is indeed the case.

The probability measure which is the product measure of (1.1) for (i, j) ∈ Z
2
+, i+

j ≤ 2N , can be mapped to a determinantal point process on {−N+1, . . . , N−1}×R

with a last particle xrmax on each line {r}×R, and such that G(N+r,N−r) = xrmax,
|r| < N . This can be proved by modifying the argument for the geometric case in
sect. 5 of [10] or by taking an appropriate limit of the geometric case. The resulting
determinantal process has the correlation kernel

(1.10) KN (r, x; s, y) = K̃N(r, x; s, y) − φr,s(x, y),

where

(1.11) K̃N(r, x; s, y) =
1

(2πi)2

∫

Γ

dw

∫

Γ

dze−xz−yw
1

z + w
F (z, w)

and

(1.12) φr,s(x, y) =
1

2π

∫

R

eiλ(y−x)F (eiλ, eiλ)dλ,

if r < s and φr,s ≡ 0 if r ≥ s. Here,

(1.13) F (z, w) =

∏N+r
k=1 (1 + z/tk)

∏N−s
k=1 (1 + w/tk)

∏N−r
k=1 (1 − z/tk)

∏N+s
k=1 (1 − w/tk)

,
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and Γ = −Γ− + Γ+, where Γ± are given by t→ te±iπ/4, t ≥ 0.
We want to consider scaling limits of the correlation kernel KN when ti = i+ β

and ti = iα, 0 < α < 1. Define

(1.14) cN,r =

N+r
∑

k=1

1

tk
+

N−r
∑

k=1

1

tk
,

(1.15) G1,β(z) =

∞
∏

k=1

(

1 − z

k + β

)

ez/k+β ,

(1.16) Gα(z) =

∞
∏

k=1

(

1 − z

kα

)

ez/k
α

,

for 1/2 < α < 1 and

(1.17) Gα(z) =

∞
∏

k=1

(

1 − z

kα

)

ez/k
α+z2/2kα

,

for 1/3 < α ≤ 1/2. We then have the following theorem.

Theorem 1.1. a) If ti = i+ β, β > −1 or ti = iα, 1/2 < α < 1, i ≥ 1, then

(1.18) K̃N (r, x+ cN,r; s, y + cN,s) →
1

(2πi)2

∫

Γ

dw

∫

Γ

dz
e−xz−yw

z + w

G(−z)G(−w)

G(z)G(w)
,

uniformly for x and y in a compact set, as N − |r| → ∞ and N − |s| → ∞, where

G = G1,β and G = Gα respectively. Furthermore, for any f such that f and f̂
belong to L1(R),

(1.19)

∫

R

f(x)φr,s(x+ cN,r, y + cN,s)dx→ f(y)

as N − |r| → ∞ and N − |s| → ∞.
b) Let ti = iα, i ≥ 1, 1/3 < α ≤ 1/2. Set r = [N tanh τ ], s = [N tanhσ] if

α = 1/2 and r = [Nτ ], s = [Nσ] if 1/3 < α < 1/2. Then,
(1.20)

K̃N(r, x+cN,r; s, y+cN,s) →
1

(2πi)2

∫

Γ

dw

∫

Γ

dz
e−xz−yw−τz2+σw2

z + w

Gα(−z)Gα(−w)

Gα(z)Gα(w)
,

and

(1.21) φr,s(x+ cN,r, y + cN,s) →
1

√

4π(σ − τ)
e−(y−x)2/4(σ−τ)

uniformly for x, y, τ, σ in a compact set as N → ∞.
c) Let ti = iα, 0 < α ≤ 1/3, i ≥ 1. Define dN = (2 logN)1/3 if α = 1/3

and dN = 21/3(1 − 3α)−1/3N1/3−α, if 0 < α < 1/3. Then, with r = [d2
NN

2ατ ],
s = [d2

NN
2ασ],

(1.22)

dNe
τ3/3+σ3/3−ση+τξKN(r, [cN,r + dN (ξ− τ2)]; r, [cN,s+ dN (η−σ2)]) → A(τ, ξ;σ, η)

uniformly for σ, τ, ξ, η in a compact set as N → ∞. Here

A(τ, ξ;σ, η) =

{

∫ ∞

0
e−λ(τ−σ)Ai (ξ + λ)Ai (η + λ)dλ, τ ≥ σ

−
∫ 0

−∞ e−λ(τ−σ)Ai (ξ + λ)Ai (η + λ)dλ, τ < σ
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is the extended Airy kernel.

The proof of theorem 1.1 will be given in section 2.1. It would be possible to con-
sider more general sequences of parameters (ti)i≥1 with similar growth behaviour,
but we will not do that here.

Remark 1.2. Let Kβ(x, y) denote the right hand side of (1.18), with G = G1,β .
Set δ = 2(

∑∞
k=1 1/k(k + β) − γ), where γ is Euler’s constant. Then,

(1.23)
1√
uv
Kβ(log

1

u
+ δ, log

1

v
+ δ) = 4KBessel

2β+1 (4u, 4v),

which relates to the limit (1.6).

As we will argue below we should interpret the result a) in the theorem as saying
that we have a trivial extended process in the limit, i.e. corresponding points at
different lines in the determinantal process will have identical fluctuations. Note
that in case a) we have fluctuation exponent 0, transversal correlation exponent 1,
and a non-universal limit in the sense that the limiting correlation kernel depends
on the ti’s. In case b) we still have fluctuation exponent 0, but the transversal
correlation exponent varies as 2α, and we have a non-trivial and non-universal
limiting process. Finally, in case c) we have a varying fluctuation exponent 1/3−α,
the transversal correlation exponent equals the standard value 2/3, and we have a
universal limiting process, the Airy process. In this case the specific choice of the
ti’s is not seen in the limit.

The limiting kernel given by (1.18) and (1.19) can be written as

(1.24) K(r, x; s, y) = K(x, y) − δ(x, y)ηrs,

where ηrs = 1 if r < s and = 0 otherwise. Consider a point process that lives on
two lines, denoted 1 and 2. Denote the particles on the first line by xj and those
on the second by yj . That the processes on the two lines are identical should mean
that

(1.25) E[
∏

j

(1−φ1(xj))
∏

j

(1−φ2(yj))] = E[
∏

j

(1−φ1(xj)−φ2(xj)+φ1(xj)φ2(xj))]

for any continuous φ1, φ2, 0 ≤ φi ≤ 1 with compact support. Let z = (i, x), i = 1, 2,
be a point on any of the two lines, and set φ(z) = φ(i, x) = φi(x). Assume that the
point process on both lines with points {zi} is determinatal with correlation kernel

(1.26) Kext(i, x; j, y) = K(x, y) − δ(x− y)ηi,j .

Then (1.25) will hold formally if

(1.27)

∞
∑

m=1

(−1)m−1

m
Tr (Kextφ)m =

∞
∑

m=1

(−1)m−1

m
Tr (K(φ1 + φ2 + φ1φ2))

m,

since this is what we formally get if we take the logarithm of both sides in (1.25)
and use the basic properties of determinantal processes, [12]. The identity (1.27)
is, at least as a formal identity, of combinatorial nature and will be discussed in
section 2.2.
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2. Proofs

2.1. Proof of theorem 1.1. We will use some notations, formulas and estimates
from the theory of entire functions. Set

E(z; p) = (1 − z)ez+z
2/2+···+zp/p

and

c
(j)
M =

M
∑

k=1

1

tjk
,

so that cN,r = c
(1)
N+r + c

(1)
N−r. Furthermore we write

HM (z) =

M
∑

k=1

logE(− z

tk
; 1) =

M
∑

k=1

log(1 + z/tk) − z/tk.

Introduce the counting function n(t) = #{k ≥ 1 ; tk ≤ t}. We have that n(t) =
max([t−β], 0) if ti = i+β and n(t) = [t1/α] if ti = iα, where [·] denotes the integer
part. The following estimate is standard

(2.1) | logE(z; p)| ≤ 1

1 − q
|z|p+1

if |z| ≤ q < 1, [1]. Integration by parts gives the following identities

(2.2) HM (z) = M logE(− z

tM
; 1) − z2

∫ tM

0

n(t)

t2(z + t)
dt,

(2.3) HM (z) = M logE(− z

tM
; 2) − c

(2)
M

2
z2 + z3

∫ tM

0

n(t)

t3(z + t)
dt,

(2.4) HM (z) = M logE(− z

tM
; 3) − c

(2)
M

2
z2 +

c
(3)
M

3
z3 + z4

∫ tM

0

n(t)

t4(z + t)
dt.

It follows from (1.11) that

K̃N (r, x+ cN,r; s, y + cN,s)

=
1

(2πi)2

∫

Γ

dw

∫

Γ

dz
e−xz−yw

z + w
eHN+r(z)−HN−r(−z)+HN−s(w)−HN+s(−w).(2.5)

Write z = ue±iπ/4, u ≥ 0. Set f(u) = log(1 + u2 + u
√

2)− u
√

2. Then, by (2.2),

(2.6) ReHM (ue±iπ/4) =
M

2
f(

u

tM
) − u3

√
2

∫ tM

0

n(t)

t2(t2 + u2 + ut
√

2)
dt,

for u ≥ 0. Note that f ′(u) ≤ 0 and f(0) = 0, and hence f(u) ≤ 0 for u ≥ 0 and
f(u) ≥ 0 for u ≥ 0. Together with (2.6) this gives

Re [−xz +HN+r(z) −HN−r(−z)]

≤ − xu√
2
− u3

√
2

[
∫ tN+r

0

n(t)

t2(t2 + u2 + ut
√

2)
dt+

∫ tN−r

0

n(t)

t2(t2 + u2 − ut
√

2)
dt

]

.

(2.7)
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Lemma 2.1. Let ti = i+ β or ti = iα, i ≥ 1, 0 < α < 1, β > −1. Set ρ(u) = log u
and r(u) = u1/α−1 respectively. There are constants C and D, which only depend
on α or β, so that, for all sufficiently large M ,

(2.8) u3

∫ tM

0

n(t)

t2(t2 + u2 + ut
√

2)
dt ≥ Cuρ(min(tM , u))

if u ≥ D.

Proof. Consider the case ti = i + β, so that n(t) = [t − β]. Note that , if tM ≥
2(β + 1), then the left hand side of (2.8) is

(2.9) ≥ u3

2

∫ tM

2(β+1)

dt

t(t2 + u2 + ut
√

2)

If u ≥ tM , then t ≤ tM ≤ u, and hence t2 + u2 + ut
√

2 ≤ (2 +
√

2)u2, and we see
that the expression in (2.9) is

≥ u

2(2 +
√

2)

∫ tM

2(β+1)

dt

t
=

u

2(2 +
√

2)
log

tM
2(β + 1)

≥ Cuρ(tM )

if M is sufficiently large. In the case ti = iα we get similarly that the left hand side
of (2.8) is

≥ u

2(2 +
√

2)

∫ tM

1

t1/α−2dt ≥ Cuρ(tM )

for all sufficientlty large M . Assume now that D ≤ u ≤ tM with a suitable D. If
D ≥ 2(β + 1), then the expression in (2.9) is

≥ u3

2

∫ u

2(β+1)

dt

t(t2 + u2 + ut
√

2)
≥ u

2(2 +
√

2)

∫ u

2(β+1)

dt

t
≥ Cu logu,

if we choose D sufficiently large. The proof for ti = iα is completely analogous. �

Assume ti = i + β or ti = iα with 1/2 < α < 1, and that x and y belong to a
compact set. It follows from (2.7) that
(2.10)

log |e−xz+HN+r(z)−HN−r(−z)| ≤ − xu√
2
−
√

2u3

∫ tN−|r|

0

n(t)

t2(t2 + u2 + ut
√

2)
dt.

Suppose that |x/
√

2| ≤ K for some constant K. From lemma 2.1 we see that the
right hand side of (2.10) is

(2.11) ≤ Ku− Cuρ(min(tN−|r|, u))

if u ≥ D and n − |r| is sufficiently large. We can thus choose L so that if u ≥ L
and M is sufficiently large, then

(2.12) |e−xz+HN+r(z)−HN−r(−z)| ≤ e−u

for z = ue±iπ/4. The same type of estimate can be done for the w-part.
It follows from (2.1), (2.2) and α > 1/2 that

lim
M→∞

eHM (z) =

∞
∏

k=1

(1 +
z

tk
)e−z/tk ,
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uniformly on compact sets. From this and the estimate (2.12) we now see that we
can take the limit in the integral (2.5) as N − |r| and N − |s| both tend to infinity
and obtain the right hand side of (1.18) with G1,β or Gα.

We also want to prove (1.19). Suppose r < s and set

ψr,s(t) =
1

2π

∫

R

eiλtFN,r,s(λ)dλ,

where

(2.13) FN,r,s(λ) =

N−r
∏

k=N−s+1

1

E(iλ/tk; 1)

N+s
∏

k=N+r+1

1

E(−iλ/tk; 1)
,

so that φr,s(x+ cN,r, y + cN,s) = ψr,s(y − x). Thus,
∫

R

f(x)φr,s(x+ cN,r, y + cN,s)dx =
1

2π

∫

R

eiλy f̂(λ)FN,r,s(λ)dλ.

Note that |E(±iλ/tk; 1)| = (1 + λ2/t2k)
1/2 ≥ 1 and consequently |FN,r,s(λ)| ≤ 1 for

all λ ∈ R. By dominated convergence it now suffices to show that FN,r,s(λ) → 1

pointwise as N − |r| → ∞, N − |s| → ∞, since we assume that f̂ ∈ L1(R).
It follows from (2.2) that

N−r
∑

k=N−s+1

logE(iλ/tk; 1) =

(N − r) logE(iλ/tN−r; 1) − (N − s) logE(iλ/tN−s; 1) + λ2

∫ tN−r

tN−s

n(t)

t2(t− iλ)
dt.

(2.14)

For a fixed λ and N − r large it follows from (2.1) that

(N − r)| logE(iλ/tN−r; 1)| ≤ 2λ2N − r

t2N−r

= 2λ2(N − r)1−2α,

which → 0 as N − s → ∞ since α > 1/2. The second term in (2.14) is treated
similarly. The third term is estimated as follows

∣

∣

∣

∣

∣

∫ tN−r

tN−s

n(t)

t2(t− iλ)
dt

∣

∣

∣

∣

∣

≤
∫ tN−r

tN−s

n(t)

t3
dt→ 0

as N − s→ ∞, since n(t) = [t− β] or n(t) = [t1/α] with α > 1/2. Similarly, we can
show that

N+s
∑

k=N+r+1

logE(−iλ/tk; 1) → 0

as N − |r| → ∞, N − |s| → ∞.
Consider next the case when 1/3 < α ≤ 1/2.
Assume that x and y belong to a compact set and that r = [τN2α], s = [σN2α],

or r = [N tanh τ ], s = [N tanhσ] in case α = 1/2, where σ, τ belong to a compact

set. We use again the formula (2.5) for K̃N and the estimate (2.10). We see that
N − |r| ≥ N/2 if N is sufficiently large in case 1/3 < α ≤ 1/2. the expression in
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(2.10) is bounded by (2.11) by lemma 2.1. with r(u) = u1/α−1, and again we obtain
the estimate (2.12) for z = ue±iπ/4 and u ≥ D with a suitable D. We can write

EHM (z) =

M
∏

k=1

E(−z/tk; 2)e−c
(2)
M z2 .

Hence,

eHN+r(z)−HN−r(−z) =

∏N+r
k=1 E(−z/tk; 2)

∏N−r
k=1 E(z/tk; 2)

e(c
(2)
N−r−c

(2)
N+r)z

2

.

Since
∑∞

k=1 1/t3k <∞ it follows from the theory of canonical products that

lim
M→∞

M
∏

k=1

E(±z/tk; 2) =

∞
∏

k=1

E(±z/tk; 2) = Gα(∓z),

uniformly on compacts. Now, if 1/3 < α < 1/2,

c
(2)
N−r − c

(2)
N+r = −sgn (r)

N+|r|
∑

k=N−|r|+1

1

k2α

∼ −sgn (r)
N1−2α

1 − 2α

[

(1 + |r|/N)1−2α − (1 − |r|/N)1−2α
]

→ −2τ

as N → ∞. The case α = 1/2 is analogous. This proves (1.20).
We also want to show (1.21). Suppose that r < s and consider φr,s. We can

write

φr,s(x + cN,r, y + cN,s) = ψr,s(y − x),

where

ψr,s(t) =
1

2π

∫

R

eiλtFN,r,s(λ)dλ,

and

FN,r,s(λ)

=

N−r
∏

k=N−s+1

1

E(iλ/tk; 2)

N+s
∏

k=N+r+1

1

E(−iλ/tk; 2)

N−r
∏

k=N−s+1

e−λ
2/t2k

N+s
∏

k=N+r+1

e−λ
2/t2k .

From the convergence of the canonical products we see that

lim
N→∞

N−r
∏

k=N−s+1

1

E(iλ/tk; 2)

N+s
∏

k=N+r+1

1

E(−iλ/tk; 2)
= 1

for each λ ∈ R. If 1/3 < α < 1/2, then

N−r
∑

k=N−s+1

1

k2α
+

N+s
∑

k=N+r+1

1

k2α
∼ 2(s− r)

N2α
∼ 2(σ − τ)

as N → ∞. Since σ > τ it follows that

lim
N→∞

ψ[τN2α],[ψN2α](t) =
1

2π

∫

R

eiλt−(σ−τ)λ2

dλ =
1

√

4π(σ − τ)
e−t

2/4(σ−τ),

and we have proved (1.21). In the case α = 1/2 we similarly get (1.21) using the
new expressions of r, s in terms of τ, σ.
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It remains to treat the caes 0 < α < 1/3. Again our starting point is the formula
(2.5) and we will use the estimate (2.10). However, we need a new estimate of the
integral in (2.10).

Lemma 2.2. Assume 0 < α ≤ 1/3. If u ≥ tM , then

(2.15) u3

∫ tM

0

n(t)

t2(t2 + u2 + ut
√

2)
dt ≥ Cu(M1−α − 1)

for some constant C > 0 that only depends on α. If 0 < α < 1/3, there is a constant
C, which only depends on α, such that for 0 ≤ u ≤ tM ,
(2.16)

u3

∫ tM

0

n(t)

t2(t2 + u2 + ut
√

2)
dt ≥ C

[

u1/α − u

1 − α
+ u3M

1−3α − max(u, 1)1/α−3

1 − 3α

]

.

If α = 1/3, there is a constant C such that for 0 ≤ u ≤ tM ,

(2.17) u3

∫ tM

0

n(t)

t2(t2 + u2 + ut
√

2)
dt ≥ Cu3 log

tM
max(u, 1)

.

Proof. If u ≥ tM , then using t2 + u2 + ut
√

2 ≤ (2 +
√

2)u2 we get

u3

∫ tM

0

n(t)

t2(t2 + u2 + ut
√

2)
dt ≥ u

1 +
√

2

∫ tM

1

[t1/α]

t2
dt,

which gives (2.15). If 0 ≤ u ≤ tM , we write the left hand sides of (2.16) and (2.17)
as

u3

∫ u

0

n(t)

t2(t2 + u2 + ut
√

2)
dt+ u3

∫ tM

u

n(t)

t2(t2 + u2 + ut
√

2)
dt.

In the first integral we use again t2 + u2 + ut
√

2 ≤ (2 +
√

2)u2 and n(t) = 0 for

0 ≤ t ≤ 1, and in the second integral we use t2 + u2 + ut
√

2 ≤ (2 +
√

2)t2. This
yields immedeiately the estimates in the lemma. �

We now consider the case 0 < α < 1/3. Write c0 = 21/3(1 − 3α)−1/3 and let
r = [c20τN

2/3], s = [c20σN
2/3], x = [c0N

1/3−α(ξ − τ2)] and y = [c0N
1/3−α(η − τ2)].

Below we will ignore the fact that we take the integer parts. In (2.5) we do the
rescaling z = c−1

0 Nα−1/3ζ, w = c−1
0 Nα−1/3ω. We will write ξ′ = ξ−τ2, η′ = η−σ2.

The integral in (2.5) becomes

(2.18)
c−1
0 Nα−1/3

(2πi)2

∫

Γ

dω

∫

Γ

dζ
e−ξ

′ζ−η′ω

ζ + ω
eHN+r(z)−HN−r(−z)+HN−s(w)−HN+s(−w).

The estimate (2.9) becomes, z = ue±iπ/4
.
= c−1

0 Nα−1/3ve±iπ/4,

log
∣

∣

∣
e−ξ

′ζ+HN+r(z)−HN−r(−z)
∣

∣

∣
≤ − ξ

′v√
2
−
√

2u3

∫ tN−|r|

0

n(t)

t2(t2 + u2 + ut
√

2)
dt

≤ − ξ
′v√
2
−
√

2u3

∫ (N/2)α

0

n(t)

t2(t2 + u2 + ut
√

2)
dt(2.19)

if N is sufficiently large. If u ≥ (N/2)α, then the last expression in (2.19) is

≤ −ξ′v/
√

2v − Cc−1
0 Nα−1/3v((N/2)1−α − 1) ≤ −C′N2/3v
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for some constant C′ > 0 if N is sufficiently large and ξ, τ belong to a compact set.
If (N/4)α ≤ u ≤ (N/2)α, then the last expression in (2.15) is

≤ −ξ′v/
√

2 − C(1 − α)−1u(u1/α − 1) ≤ −C′N2/3v,

and if 0 ≤ u ≤ (N/4)α it follows from (2.16) that the last expression in (2.19) is

≤ −ξ′v/
√

2v − C′N1−3αu3 ≤ −ξ′v/
√

2v − C′′v3. It follows from these estimates,
that we can restrict the integration in (2.18) to 0 ≤ v ≤ Nγ , for any γ > 0, with a
negligible error in the limit N → ∞.

By (2.17) we can write

HN+r(z) −HN−r(−z) = (N + r) logE(−z/tN+r; 3) − (N − r) logE(z/tN−r; 3)

− 1

2
(c

(2)
N+r − c

(2)
N−r)z

2 +
1

3
(c

(3)
N+r − c

(3)
N−r)z

3

+ z4

∫ tN+r

0

n(t)

t4(t+ z)
dt− z4

∫ tN−r

0

n(t)

t4(t− z)
dt.(2.20)

We choose 0 < γ < min(1/12, 1/3− α). Now, c
(2)
N+r − c

(2)
N−r ∼ 2r/N2α and c

(3)
N+r −

c
(3)
N−r ∼ c30N

1−3α as N → ∞. Hence,

−1

2
(c

(2)
N+r − c

(2)
N−r)z

2 +
1

3
(c

(3)
N+r − c

(3)
N−r)z

3 → −τζ2 +
1

3
ζ3

as N → ∞. Note that |z/tN+r| ≤ CNγ−1/3 < 1/2 if N is large enough. Hence, it
follows from (2.1) that

|(N + r) logE(−z/tN+r; 3)| ≤ 2(N + r)| − z/tN+r|4 ≤ CN4γ−1/3,

which → 0 as N → ∞ since γ < 1/12.
We have, for t ≥ 1 and N sufficiently large,

|t+ z| ≥ |t| − |z| ≥ 1

2
|t| + 1

2
− c−1

0 Nα−1/3|v| ≥ 1

2
|t|,

since Nα−1/3|v| ≤ Nα−1/3+γ → 0 as N → ∞. Because n(t) = 0 if t < 1, we see
that

∣

∣

∣

∣

z4

∫ tN+r

0

n(t)

t4(t+ z)
dt

∣

∣

∣

∣

≤ CN4α−4/3+4γ

∫ (N+r)α

1

t1/α−5dt,

which → 0 as N → ∞. The second integral in (2.20) is analogous, and we can treat
HN−s(w) −HN+s(−w) in exactly the same way.

We have proved that

lim
N→∞

c0N
1/3−αK̃N ([c20τN

2/3], [cN,r + c0N
1/3−α(ξ − τ2)];

[c20σN
2/3], [cN,r + c0N

1/3−α(η − σ2)])

=
1

(2πi)2

∫

Γ

dω

∫

Γ

dζ
e−(ξ−τ2)ζ−(η−σ2)ω

ζ + ω
e−τζ

2+ζ3/3+σω2+ω3/3.(2.21)

Note now that we have the identity

1

(2πi)2

∫

Γ

dω

∫

Γ

dζ
e−ξζ−ηω

ζ + ω
e−τζ

2+ζ3/3+σω2+ω3/3

= e2(σ
3−τ3)/3+ση−ξτ

∫ ∞

0

e(σ−τ)λAi (ξ + τ2 + λ)Ai (η + σ2 + λ)dλ.(2.22)
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To see this observe that for Re (ζ + ω) > 0 we have
∫ ∞

0

e−λ(ζ+ω)dλ =
1

ζ + ω
.

Hence, the left hand side of (2.22) can be written
∫ ∞

0

(

1

2πi

∫

Γ

e−ζ(ξ+λ)−τζ2+ζ3/3dζ

) (

1

2πi

∫

Γ

e−ω(η+λ)−σω2+ω3/3dω

)

dλ.

Let Γ′ consist of the two rays−Γ′
1 and Γ′

2, where Γ′
1 : t→ te3πi/4 and Γ′

1 : t→ teπi/4,
t ≥ 0. The change of variables ζ = −iz gives

1

2πi

∫

Γ

e−ζ(ξ+λ)−τζ2+ζ3/3dζ =
1

2πi

∫

Γ′

eiz(ξ+λ)+τz2+z3/3dz

= e−2τ3/3−(ξ+λ)τAi (ξ + λ+ τ2),

and we obtain (2.22).
Suppose next that r < s and consider φr,s. Set dN = c0N

1/3−α. Then

dNψr,s(dN t) =
1

2π

∫

R

eiλtFN,r,s(
λ

dN
)dλ,

where FN,r,s is given by (2.13). We have that

logFN,r,s(
λ

dN
) = −HN−r(−

iλ

dN
) +HN−s(−

iλ

dN
) −HN+s(

iλ

dN
) +HN+r(

iλ

dN
).

It follows from (2.20) and appropriate estimates similar to the ones above that, for
σ > τ ,

lim
N→∞

FN,r,s(
λ

dN
) = −(σ − τ)λ2

and also that we have an estimate
∣

∣

∣

∣

FN,r,s(
λ

dN
)

∣

∣

∣

∣

≤ Ce(σ−τ)λ
2/2

if N is sufficiently large. Thus

lim
N→∞

dNψr,s(dN t) =
1

√

4π(σ − τ)
e−t

2/4(σ−τ).

Since, φr,s(x+ cN,r, y + cN,s) = ψr,s(y − x), we obtain

lim
N→∞

φ[c20τN
2/3],[c20τN

2/3]([cN , r + c0N
1/3−αξ], [cN , r + c0N

1/3−αη])

=
1

√

4π(σ − τ)
e−t

2/4(σ−τ).(2.23)

If we combine (2.21)-(2.23) we get (1.22), since, [13],
∫

R

e−λ(τ−σ)Ai (ξ+λ)Ai (η+λ)dλ =
1

√

4π(σ − τ)
e−(ξ−η)2/4(σ−τ)−(σ−τ)(ξ+η)(σ−τ)3/12.

The case α = 1/3 is treated similarly. We replace dN = c0N
1/3−α with (2 logN)1/3

and Nγ with (logN)1/4.
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2.2. The identity (1.27). In this section we will discuss the identity (1.27). Write
g = φ1 + φ2 + φ1φ2. We have

(2.24) Tr (Kg)m =

∫

Rm

g(x1)K(x1, x2)g(x2)K(x2, x3) . . . g(xm)K(xm, x1)d
mx

and

Tr (Kextφ)m =
∑

i1,...,im=1,2

∫

Rm

φi1(x1)Ki1,i2(x1, x2)φi2 (x2)Ki2,i3(x2, x3)

. . . φim (xm)Kim,i1(xm, x1)d
mx,(2.25)

where we have written

(2.26) Kij(x, y) = K(x, y) − δ(x − y)ηij .

If we insert g = φ1 + φ2 + φ1φ2 into (2.24) we can at each position choose φ1, φ2

or φ1φ2. Choosing φ1 or φ2 corresponds exactly to the summation over i = 1, 2
for a factor φi in (2.25). If we choose φ1φ2, this must correspond to the δ-function
contribution when we insert (2.26) into (2.25). Note that when we insert (2.26)
into the product in (2.25) we do not get any contribution from two consecutive
δ-functions, since ηi1i2ηi2i3 = 0 for all choices of i1, i2, i3. This means that we only
get pairs φ1φ2 in (2.25) just as in (2.24). If we have r factors of the type φ1φ2 in
(2.24) we can place them in the product in

(

m
r

)

different ways. This must come
from taking r δ-functions in Tr (Kextφ)m+r .

Hence to show that the left and right hand sides of (1.27) are equal we must
show that the signs and the combinatorial factors agree. The signs are easy, since
the sign in front of Tr (Kextφ)m+r is (−1)m+r−1 and the sign from the δ-functions
is (−1)r. This gives (−1)m−1 which is the sign in front of Tr (Kg)m.

The coefficient in front of the expansion of the expression (2.24) with r factors
φ1φ2 is 1

m

(

m
r

)

. The factor in front of Tr (Kextφ)m+r is 1/(m + r) and hence we
must show that the number of ways of placing the r δ-functions must be

(2.27)
m+ r

m

(

m

r

)

=

(

m

r

)

+

(

m− 1

r − 1

)

.

Recall from above that we cannot have two consecutive δ-functions in the expression
(2.25) for the trace since this gives a zero contribution. The circular structure of
the trace means that we have the following combinatorial problem: Coose r points
on the discrete circle with m + r points in such a way that the distances between
the chosen points are all ≥ 2. We must show that the number of ways this can be
done equals the expression in (2.27).

Number the points as 0, 1, . . . ,m + r − 1 and count modula m + r. Let c be
the first point that is included and let ℓ1, . . . , ℓr−1 be the distances between the
included points. We get two contributions.

1) If c = 0 we get
∑

ℓ1+···+ℓr−1≤m+r−2,ℓi≥2

1,

since we cannot choose the last point.
2) If c 6= 0 we get

m−r+1
∑

c=1

∑

ℓ1+···+ℓr−1≤m+r−1−c,ℓi≥2

1.
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Write ℓi = ki + 2. Then

(2.28)
∑

ℓ1+···+ℓr−1≤m+r−1−c,ℓi≥2

1 =
∑

k1+···+kr−1≤m−r+1−c,ki≥0

1.

We now use the identity

∑

k1+···+kr−1=p,ki≥0

1 =

(

r + p− 2

r − 2

)

.

Hence, the expression in (2.28) equals

m−r+1−c
∑

p=0

(

r + p− 2

r − 2

)

=

(

m− c

r − 1

)

by the identity

(2.29)

m
∑

k=0

(

n+ k

n

)

=

(

n+m+ 1

n+ 1

)

.

This now shows that the expression in 1) is
(

m−1
r−1

)

. The expression in 2) equals

m−r+1
∑

c=1

(

m− c

r − 1

)

=

(

m

r

)

by (2.29). This completes the argument.

Acknowledgement: I thank Peter Forrester for bringing up the problem on the
properties of extended processes when we have decaying parameters during a visit
to Stockholm and for interesting discussions.
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